其基本原理是设定一个参考电压,将输入的信号和这个参考电压比较。
如果参考电压设定在反相端,则输入的信号电压大于参考电压时,输出高电位。
如果参考电压设定在同相端,则输入的信号电压大于参考电压时,输出低电位。
能解决你的问题么?如果还有问题,请继续讨论。
比较器是将一个模拟电压信号与一个基准电压相比较的电路。
比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。
因此,也可以将其当作一个1位模/数转换器(ADC)。
运算放大器在不加负反馈时从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。
而且,一般情况下,运算放大器的延迟时间较长,无法满足实际需求。
比较器经过调节可以提供极小的时间延迟,但其频响特性会受到一定限制。
为避免输出振荡,许多比较器还带有内部滞回电路。
比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。
LM393是电压比较器,将接在R-Light端的光敏二极管接收光照时产生的电阻值变化变成电压信号传递给电压比较器的同相输入端INB+,这个变化的电压信号与电压比较器的反相输入端INA-端的基准电压相比较,当同相端INB+电压大于反相端INA-端电压时,电压比较器的输出端OUT输出高电平电压,当同相端INB+电压小于反相端INA-端电压时,电压比较器的输出端OUT输出低电平电压,此时LightLED灯亮。
在没有光照时,光敏二极管的电阻值很大,电阻R23与该光敏二极管组成的分压点电压升高,使同相端INB+电压大于反相端INA-端电压,电压比较器的输出端OUT输出高电平电压,此时LightLED灯不亮。
在有光照时,光敏二极管的电阻值很小,电阻R23与该光敏二极管组成的分压点电压下降,使同相端INB+电压小于反相端INB-端电压,电压比较器的输出端OUT输出低电平电压,此时LightLED灯亮。
接在反相端INA-端的电位器VR2用于调节该端的电位电压,这个电压也就是电压比较器输入的阀值翻转电压,用于光照灵敏度调节。
比较器是将一个模拟电压信号与一个基准电压相比较的电路。
比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。
因此,也可以将其当作一个1位模/数转换器。
运算放大器在不加负反馈时从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。
而且,一般情况下,运算放大器的延迟时间较长,无法满足实际需求。
比较器经过调节可以提供极小的时间延迟,但其频响特性会受到一定限制。
为避免输出振荡,许多比较器还带有内部滞回电路。
比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。
1、同相比较器的特点:
电路接法是参考点位接在反相端,输入信号接在同相端。
当输入电压大于参考电压时,输出高电位。
用于判断输入电压是否高于你所要限制的较高的电压。
2、反相比较器的特点:
电路接法是参考点位接在同相端,输入信号接在反相端。
当输入电压小于参考电压时,输出高电位。
用于判断输入电压是否低于你所要限制的较低的电压。
3、反相施密特比较器:
电路接法是参考点位来自于本比较器的输出端并且接在同相端,输入信号接在反相端。
当输入电压大于参考电压时输出低电位。
当输出端输出低电位后,参考电压也随之变得更低,当输入电压降低时,只有降到低于这个更低参考点位后,比较器是输出才能变成高电平输出。
用于限定一个电压范围。
4、过零比较器:
被用于检测一个输入值是否是零。
原理是利用比较器对两个输入电压进行比较。
两个输入电压一个是参考电压Vr,一个是待测电压Vu。
一般Vr从正相输入端接入,Vu从反相输入端接入。
根据比较输入电压的结果输出正向或反向饱和电压。
当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。
用比较器构造的过零比较器存在一定的测量误差。
当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。
5、电压比较器:
可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:
比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平。