有理数指整数可以看作分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。
有理数的小数部分是有限或循环小数。
不是有理数的实数遂称为无理数。
有理数为整数和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
基本数是在自然科学中,为了描述自然规律,需要运用各种常数。
在这些常数中,一类是有量纲的常数,例如,光速C,普朗克常数h,电子电荷e,质子质量mp,电子质量me,牛顿引力常数G,哈勃常数H等。
另一类是没有量纲的常数,这些常数是具有相同单位的常数的比值。